• La Mécanique Néo-Newtonienne

  • Les autres théories ou peut être la votre...
Les autres théories ou peut être la votre...
 #49433  par Dick
 
bongo a écrit : vendredi 4 octobre 2024 à 21:40Bah ça fait 9 pages qu'on tourne en rond en fait.
Tu m’as posé des questions auxquelles j’ai tenté de répondre, peut-être maladroitement parfois. Par exemple, tu m’as demandé si la base d’un espace physique était orthonormée. J’aurais dû répondre oui, mais la base d’un espace euclidien n’est pas forcément orthonormé. Tu m’as demandé aussi si j’excluais les espaces en extension ou en contraction, alors que j’avais bien spécifié qu’un espace physique est un ensemble de points fixes entre eux. S’en est suivi des digressions qui ont rallongé la discussion.
tu trouves que je comprends rien à la mécanique classique ? […] Est-ce que tu connais l'effet Dunning-Kruger ?
Oui, je crois que c’est ton problème, tu connais tellement de choses en physique que revenir à un problème aussi basique que la mécanique newtonienne t’est presque impossible, il reste dans ta tête des choses bien plus complexes.
Tu veux me refaire un cours de mécanique classique ?
Loin de moi cette idée, je voulais seulement donner mon approche de celle-ci pour savoir si c’était correct et clair. Tes remarques m’ont aidé dans ce sens, je t'en remercie. J’aurais continué sur la mécanique néo-newtonienne telle que je la conçois, ce n’est pas possible, restons en à la newtonienne.
 #49436  par bongo
 
Dick a écrit : samedi 5 octobre 2024 à 11:09Oui, je crois que c’est ton problème, tu connais tellement de choses en physique que revenir à un problème aussi basique que la mécanique newtonienne t’est presque impossible, il reste dans ta tête des choses bien plus complexes.
En fait le plus simple, c'est de partir du constat : il y a quoi comme problème.
Bibliographie : qu'est-ce qui a été tenté ?
Ton avancée : comment tu vas résoudre ce problème et en quoi tu vas plus loin que dans ce que tu as vu dans la bibliographie
Avant de plonger dans des problèmes techniques.
 #49438  par Dick
 
Je vous fais part de ma proposition pour avoir des retours afin de connaître les erreurs que j’ai pu commettre et les améliorations que je peux y apporter. Voilà la suite de cette proposition.

1.2. CINÉMATIQUE DU POINT DANS UN ESPACE PHYSIQUE.
1.2.1. Vitesse.
Un point O est pris comme origine. La vitesse d’un point mobile M’ dans un espace physique E est la dérivée du vecteur position x’ = OM’ par rapport au temps: v = dOM’/ dt = dx’/dt = v_s f, f étant le vecteur unitaire de vitesse, tangent à la trajectoire.
Habituellement les scalaires sont notés en italique, ils sont caractérisés ici par l’indice s.
1.2.2. Accélération.
La dérivée de ce vecteur vitesse est l’accélération g égale à g= dv/dt = gt + gn, gt étant l’accélération tangente à la trajectoire gt = f dv_s/dt et gn l’accélération normale à celle-ci: gn = b df/dt = (v_s)^2 n/r, n étant le vecteur unitaire de vitesse perpendiculaire à la trajectoire dirigée vers le centre et r le rayon de courbure de cette trajectoire.

1.3. ESPACE DE VITESSES.
Un élément y d’un espace de vitesses F est défini par y = b f = Σ bk fk, b étant fonction de la vitesse, (fk) forme une base de F. Le point origine O est pris également comme origine des y. Un espace de vitesses est représenté par un espace euclidien de dimension 3.
 #49439  par bongo
 
Tu ne dis pas quel problème tu veux résoudre.
Là... c'est exactement la même chose que la mécanique classique...
 #49441  par Dick
 
Je ne veux pas résoudre de problème, j’expose ce qui pourrait être une mécanique néo-newtonienne.
 #49443  par bongo
 
une reformulation alternative qui dit exactement la même chose ?
  • 1
  • 8
  • 9
  • 10
  • 11
  • 12
  • 15