PRINCIPE D'EQUIVALENCE
Soit une fusée qui s'éloigne de la Terre à accélération constante. Alors la Terre est en chute libre par rapport à cette fusée.
On va imaginer un champ de gravitation sans effet des marées.
Soit une cabine dans un tel champ de gravitation qui accélère donc exactement comme la fusée et qui se déplace dans la même direction qu'elle. Un observateur en chute libre est dans la même situation par rapport à la cabine que la Terre par rapport à la fusée.
Et un observateur terrestre est par rapport à la cabine dans la même situation que l'observateur en chute libre dans le champ de gravitation par rapport à la fusée.
Pour l'observateur placé à l'avant de la fusée le temps à l'arrière passe moins vite en raison du changement de simultanéité (dilatation du temps gravitationnelle).
Pour l'observateur terrestre le temps à l'arrière de la fusée passe moins vite en raison de la contraction des longueurs. Cette dilatation correspond à une fraction de celle constatée par l'observateur de la fusée.
L'observateur en chute libre dans son champ de gravitation et qui est immobile par rapport à la fusée fera les mêmes constatations que l'occupant de la fusée.
Pour l'occupant en haut de la cabine le temps en bas passe moins vite en raison de la dilatation du temps gravitationnelle.
Pour l'observateur en chute libre dans son champ de gravitation le temps en bas de la cabine passe moins vite en raison de la contraction des longueurs. Cette dilatation correspond à une fraction de celle constatée par l'observateur de la cabine.
L'observateur terrestre qui est immobile par rapport à la cabine fera les mêmes constatations que l'occupant de la cabine.
Les situations sont strictement équivalentes, on ne peut pas savoir qui est dans le champ de gravitation et qui n'y est pas.
C'est ainsi qu'Einstein a généralisé l'équivalence des référentiels inertiels aux référentiels accélérés.
De même qu'il n'y a pas de vitesse constante absolue il n'y a pas d'accélération coordonnée absolue.
L'origine de la dilatation du temps gravitationnelle (changement de simultanéité) à bord de la fusée se comprend ainsi :
Quand la fusée accélère, la lumière émise par l'arrière met plus de temps à atteindre l'avant. La vitesse de la lumière valant localement c, cet effet doppler est assimilé à une dilatation du temps. Réciproquement, l'occupant de l'arrière voit la lumière arriver de l'avant plus rapidement et attribut cette accélération à une accélération du temps à l'avant de la fusée. Il s'agit ni plus ni moins que du changement de simultanéité de la fusée en train de se réaliser, c'est à dire le décalage de temps entre l'avant et l'arrière qui s'accroît du fait de l'augmentation de la vitesse.
L'observateur de la terre ne perçoit pas cet effet car il ne change pas de simultanéité. Par contre, celui-ci va constater une dilatation du temps de l'arrière de la fusée par rapport à l'avant en raison du phénomène de contraction des longueurs.
De la même manière, l'observateur en chute libre ne percevra pas la différence de passage du temps entre l'avant et l'arrière de la cabine autrement que par la contraction de celle-ci.
Donc dans le référentiel de la terre et de la cabine le temps dans la cabine passe moins vite en haut qu'en bas mais par contre le même phénomène dans la fusée n'est qu'une illusion d'optique.
Dans le référentiel du chuteur et de la fusée c'est la différence de passage du temps dans la cabine qui est une illusion d'optique.
La théorie d'Einstein ne propose pas de référentiel absolu associé à l'espace, elle ne peut donc pas trancher la question de savoir qui a raison et qui a tort
Il y a quelque chose d'essentiel dans le champ de gravitation engendré par les masses, c'est que la courbure radiale de l'espace n'est pas constante, ce qui rend possible de distinguer de manière absolu l'accélération de la gravitation avec effet de marées. Mais cette différence est quantitative et non qualitative, c'est à dire qu'elle n'est pas l'essence du phénomène que l'on a sous les yeux.
Ce qui compte ce n'est pas le mot employé mais que l'espace environnant soit courbe et de courbure constante. Donc un "champ de gravitation sans force de marées" "ou champ de pesanteur" est un environnement dans lequel l'espace est courbe et de courbure constante.
Du point de vue d'une fusée qui accélère, elle se trouve dans un "champ de gravitation sans force de marées" "ou champ de pesanteur", [en fait champ de gravitation homogène] mais du point de vue de la Terre l'espace est plat et la fusée ne fait qu'accélérer dans un espace plat.
La force des marées qui détermine la courbure de l'espace-temps n'est à priori qu'un outil mathématique tandis que la courbure de l'espace est plus fondamentale puisque c'est elle qui fixe la géométrie spatiale de l'univers.
Imaginons deux points sur un cercle, donc avec courbure constante, la situation est symétrique, et chacun peut se supposer à la place de l'autre. Si au lieu d'un cercle on introduit une courbure comme celle du paraboloïde de Flamm, la symétrie est rompue, mais l'essence du phénomène reste le même : il y a courbure de l'espace.
La courbure spatiale d'un champ de gravitation est une courbure des trois dimensions de l'espace, mais dans le cas où il n'y a pas de force de marées, l'espace ne se courbe que dans la direction du mouvement, donc deux objets en mouvement ne se rapprocheront pas.
La courbure d'un "champ de pesanteur" (donc sans force de marées) est une courbure de l'espace en cylindre dans le sens du mouvement.
https://forums.futura-sciences.com/newr ... y&t=937484
Physiquement, cela se passe ainsi :
Dans un champ de gravitation, la cabine est immobile et le réseau des ondes planes de l'éther la traverse en accélérant, tandis que dans le champ d'accélération, le réseau des ondes de l'éther est immobile et la cabine est en accélération. Pour cette raison, dans le cas de l'accélération, la vitesse par rapport aux réseau d'onde croit indéfiniment alors que dans le cas gravitationnel, la vitesse reste toujours la même, le réseau d'onde ayant une vitesse en haut de la cabine et une autre en bas qui sont toujours les mêmes.
On voit donc que tandis que le point commun est l'anisotropie des ondes par rapport à la cabine, les deux situations ont des origines différentes.
Le réseau des ondes de l'éther se déplacent dans une direction génère une courbure de l'espace dans cette direction, celui allant en sens inverse en génère une dans l'autre, et en un point donné loin de toute masse les deux se compensent. Dans un champ de gravitation les deux ne se compensent plus et la courbure prend une direction plutôt qu'une autre. A bord d'une fusée accélérée, se produit le même phénomène mais la vitesse croit indéfiniment entraînant une augmentation de la courbure jusqu'à 90° à la vitesse de la lumière.
PROBLEME DE LA MODELISATION DE LA RG
En RG on suppose en coordonnées de Schwarzschild que la vitesse de la lumière est isotrope partout ce qui oblige à supposer une dilatation du temps cinématique pour le chuteur, car si la lumière est isotrope par rapport à l'observateur elle ne peut pas l'être par rapport au chuteur et il doit donc subir la dilatation du temps.
Si on se place en coordonnées de Lemaître la lumière devient isotrope par rapport au chuteur et il ne subit pas la dilatation du temps, mais du coup elle n'est plus isotrope par rapport à l'observateur éloigné.
Si on se place en coordonnées de Painlevé la vitesse est isotrope par rapport au chuteur mais pas par rapport au r, ce qui revient à dire comme pour Lemaître que le chuteur ne subit pas la dilatation.
Avec les équations de la RG en changeant de système de coordonnées on peut jouer avec les paramètres et tout reste cohérent, mais la théorie ne sait pas discerner la réalité parmi toutes les possibilités.
Or on voit que les équations ne peuvent pas prendre en charge simultanément l'isotropie par rapport au chuteur et l'isotropie par rapport à l'observateur éloigné. En coordonnées de Schwarzschild l'isotropie n'étant pas vraie pour le chuteur il subit donc en contrepartie la dilatation du temps pour que les résultats mathématiques restent bons.
Les coordonnées de Schwarzschild sont donc une déformation de la réalité.
La solution d'Einstein est incapable de prendre en charge la variation d'anisotrope de la vitesse de la lumière.
Son côté artificiel est facile à voir : Elle prétend que la vitesse c est isotrope par rapport à l'immobile et anisotrope par rapport au chuteur de l'infini.
Il faudrait tenir compte de ce que près de l'observateur de l'infini la vitesse c est isotrope mais plus loin dans le champ de gravitation elle ne l'est plus.
C'est de cette anisotropie que vient la contraction de l'espace.
On voit alors qu'elle est de même nature que la contraction de la RR. La vitesse c est anisotrope par rapport à l'objet en mouvement contracté de la RR et par rapport à l'objet immobile contracté de la RG.
Nous avons bien une courbure de l'espace dans la dimension scalaire du temps tant en RR qu'en RG.
--------------------------------------------------------
En RR, ce qui est fondamental ce sont la contraction des longueurs et le temps local, c’est-à-dire la simultanéité locale, la dilatation du temps n’est qu’une conséquence directe de ces deux phénomènes. Ces deux phénomènes sont d’ailleurs une même chose. L’objet se contracte parce qu’il change de simultanéité.
Question : en RG où est passé le changement de simultanéité ? Comment peut-il y avoir contraction des longueurs et dilatation du temps sans changement de simultanéité ?
Pour l’observateur immobile de Schwarzschild, la lumière est isotrope autour de lui et elle l’est également plus bas dans le champ de gravitation.
Pour l'observateur en chute libre de Lemaître situé plus bas dans le champ de gravitation la lumière est également isotrope par rapport à lui et par rapport à l’observateur immobile de Schwarzschild.
Etant donné qu'ils sont en mouvement accéléré l'un par rapport à l'autre, comment la lumière peut-elle être isotrope pour les deux à la fois ?
C'est qu'il y a un changement de simultanéité progressif le long de l’axe du champ gravitationnel, mais comme le chuteur est en inertie, ce n'est pas de son mouvement propre que vient ce changement progressif de simultanéité, mais de l'espace-temps dans lequel il évolue. En d'autres termes ce n'est pas lui mais l'espace-temps qui change de simultanéité.
Si on applique un changement de simultanéité à l'espace-temps, il faut imaginer que dans un champ de gravitation les axes du temps et d’espace d'un objet immobile subissent un boost. Ainsi, l’axe du temps, en s'inclinant entraîne avec lui la ligne d’univers de l'objets immobile : par rapport à la zone située hors du champ de gravitation, les objets immobiles sont mis en mouvement sans effort apparent.
Mais changer les axes d’espace et de temps de cette façon revient d’une certaine manière à changer la métrique. C’est ce qui a été fait par Einstein. Mais avec un changement de métrique on perd de vue que le changement de simultanéité vient de l'espace et n'est pas le fait des objets isolés en chute libre.
On fait passer le changement de simultanéité du chuteur pour cinématique alors qu'il est gravitationnel, général, de tout l'espace, et non propre à lui-même. C'est en contradiction avec le principe d'équivalence.
On perd de vue que la contraction des longueurs gravitationnelle est associée à un changement de simultanéité gravitationnel et donc que la contraction des longueurs est nécessairement associée à un décalage de temps radial de telle sorte que longueur contractée ²+ décalage de temps² = longueur propre², comme en RR.