Astronomie, Univers, Planètes et Satellites du Système Solaire, Pratique de l'Astro, Astrophotographie, Théories Scientifiques 

  • Détermination d'une orbite elliptique

  • Explication de notions mathématiques utilisées en astronomie et dans ce forum
Explication de notions mathématiques utilisées en astronomie et dans ce forum
 #11397    par floyd12
 dimanche 3 avril 2011 à 22:24
Bonjour,

Je voudrais démontrer la première loi de Kepler dans le cas de la Terre et du Soleil. J'ai pu trouver l'équation différentielle du mouvement:

d²u/d(theta)² + u = mu/C²
avec u = 1/r, mu = G*Ms*Mt, C = constante des aires

J'ai écrit la solution de cette équation: u(theta) = C*cos(theta) + C'*sin(theta) + mu/C², mais je ne sais pas comment déterminer la constante d'intégration C. J'ai déterminé C' en traduisant le fait que pour theta = 0, r est minimum (donc C = 0). Mais je ne sais pas comment déterminer C.

Pourriez-vous m'aider ?

Merci.
 #12438    par Bretzel
 jeudi 16 juin 2011 à 02:08
bonjour,
tu as une équation différentielle du second ordre, il te faut donc deux conditions initiales :
par exemple position et vitesse à un moment donné.

On peut aussi transformer une équation différentielle du n ième ordre en un système de n équations du 1er ordre, en utilisant la technique du vecteur d'état, auquel cas, les conditions initiales se retrouvent rassemblées en un vecteur, mais cela fait toujours n composantes...

L'intérêt de cette technique est de pouvoir résoudre le système numériquement (avec, par exemple, des méthodes de type Runge Kutta (RK4, RK5)), ce qui est actuellement, la seule façon générale de résoudre les problèmes à plus de 2 corps)

Petits cas particulier, une fois l'ellipse calculée, pourquoi ne t'attaquerais tu pas à démontrer l'existence des points de Lagrange (qui est en fait un problème à n corps) ?

 Sujets similaires

 Stats

 Dernier message

7 Réponses 
 33949 Vues
 Dernier message de MIMATA
 mercredi 17 octobre 2018 à 19:32