Astronomie, Univers, Planètes et Satellites du Système Solaire, Pratique de l'Astro, Astrophotographie, Théories Scientifiques 

  • Courbure

  • La relativité générale est une théorie relativiste de la gravitation. Elle décrit l'influence sur le mouvement des astres de la présence de matière et, plus généralement d'énergie, en tenant compte des principes de la relativité restreinte. La relativité générale englobe et supplante la théorie de la gravitation universelle d'Isaac Newton.
    Une question à ce sujet ? Demandez toujours...
La relativité générale est une théorie relativiste de la gravitation. Elle décrit l'influence sur le mouvement des astres de la présence de matière et, plus généralement d'énergie, en tenant compte des principes de la relativité restreinte. La relativité générale englobe et supplante la théorie de la gravitation universelle d'Isaac Newton.
Une question à ce sujet ? Demandez toujours...
 #31226    par Nicolas_Rush
 vendredi 27 juin 2014 à 14:44
Bonjour, le tenseur de Riemann apparaît dans l'équation de déviation géodésique. C'est un tenseur de courbure 3 covariants 1 contravariants.

Que disent physiquement les équations de déviation géodésiques je vous prie?

En quoi le tenseur de Riemann accède t il au rang de tenseur de courbure de part son apparition dans l'équation de déviation géodésiques je vous prie?

Merci d'avance et bonne après midi Y-16 .
 #31265    par bongo
 dimanche 29 juin 2014 à 20:46
Tu peux tenter de réécrire ce tenseur, dont tu as l'expression en changeant de coordonnées. C'est fastidieux, mais on y arrive.

Sinon plus astucieux, dans l'équation de déviation des géodésiques, tu as ce que l'on appelle des dérivées covariantes, qui ont une forme tensorielle. En plus de cela, tu as un terme supplémentaire (celui qui dépend du tenseur de Riemann) qui doit forcément avoir une forme tensorielle, étant donné que les autres termes sont tensoriels.
 #31278    par Nicolas_Rush
 lundi 30 juin 2014 à 15:48
Bonjour Bongo et merci. Oui on peut écrire le tenseur de Riemann comme commutateur de 2 dérivée covariantes agissant sur un tenseur 1 covariants(une forme où un éléments du dual où un covecteur.). Donc c'est un objet tensoriel. Mais le problème c'est le mot courbure.

Il(le tenseur de Riemann.). apparaît dans les équations de déviation géodésique. Mais en quoi ses équations et donc par la le tenseur de Riemann caractérise la courbure je vous prie?

Merci d'avance et bonne après midi Y-16 .
 #31279    par bongo
 lundi 30 juin 2014 à 16:54
La définition mathématique précise de la courbure est le suivant :
- en faisant un transport parallèle d'un vecteur sur deux trajets différents, un espace ne présente pas de courbure si les deux vecteurs obtenus sont identiques
- sinon la différence est proportionnelle au tenseur de courbure, qui est une application linéaire prenant : un vecteur transporté, deux vecteurs directions (caractérisant le parcours), et retourne un vecteur
 #39616    par Markus Bloch
 dimanche 26 juin 2016 à 09:02
Quelle est la valeur de la courbure scalaire dans la métrique de Schwarzschild? Je lis que le tenseur de Ricci dans cette métrique est nul en dehors de l'étoile centrale ! En conséquence, j'aurais tendance à comprendre que la courbure dans cette zone est nulle, alors que j'avais bien en tête que la Gravitation est due à la courbure de l'espace-temps! Ou peut-être que la courbure de l'espace-temps est nulle, mais pas la courbure spatiale !! Bref, j'aurais besoin d'une explication.
 #39624    par bongo
 dimanche 26 juin 2016 à 13:00
Réponse rapide, mais c'est trop long de développer.
La courbure est représentée par le tenseur de Riemann-Christoffel, c'est le tenseur d'ordre 4.
Le tenseur de Ricci est la contraction du tenseur de courbure. Avoir un tenseur de Ricci nulle ne veut pas dire avoir une courbure nulle.

Un cours de Richard Taillet
http://podcast.grenet.fr/podcast/cours- ... -generale/
Chapitre 11, 12 et 13